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SUMMARY

We propose a space–time adaptive procedure for a model parabolic problem based on a theoretically
sound anisotropic a posteriori error analysis. A space–time finite element scheme (continuous in space
but discontinuous in time) is employed to discretize this problem, thus allowing for non-matching meshes
at different time levels. Copyright q 2008 John Wiley & Sons, Ltd.
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1. THE GOAL

We aim at providing an adaptive algorithm for an efficient approximation of a pure diffusive
parabolic problem. This is pursued via both an adaptive choice of the temporal step and an
anisotropic mesh adaption strategy, suitably combined to minimize the computational cost. The
key point is the derivation of an a posteriori error estimator where the spatial contribution is
kept distinct from the temporal one, to balance the different sources of error (see e.g. [1, 2]).
In more detail, we control a proper global norm of the discretization error in compliance, e.g.
with [3, 4]. An approximation scheme based on space–time finite elements, continuous in space
but discontinuous in time (a so-called cGdG scheme), provides us with a natural framework
where an estimator, with the space and time contributions split, can be ensued. The cGdG ap-
proach is widely used in the literature (we refer, e.g. to [4, 5]), though essentially confined to the
isotropic setting. The anisotropic focus represents the first innovative contribution of this paper.
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Indeed, as far as we know, the only paper dealing with anisotropic grids in the parabolic framework
is [6], in a standard finite element-backward Euler framework. In this work the author skipped
the time adaption issue, simply by proposing the successive halving of the time step to make the
time contribution with respect to the spatial one negligible. However, in our opinion, one of the
crucial weak points of [6] consists in neglecting the unavoidable exchange of information among
the grids associated with successive time intervals. In reference to these last two issues, our work
is an improvement over [6].

Let us focus on the model problem at hand

�u
�t

− ∇ · (D∇u) = f in �× J

u(x, t) = 0 on �D × J, D∇u(x, t) · n= g on �N × J, u(x, 0)= u0(x) on �
(1)

where J = (0, T ), with T>0, � is a bounded polygonal domain in R2 with boundary ��, �D
and �N are measurable non-overlapping partitions of �� such that ��=�D ∪ �N , and n is the
unit outward normal vector to ��. Concerning the data, the source f ∈ L2(0, T ; (H1

�D
(�))′); the

diffusivity tensor D ∈ [L∞(�)]2× 2 and satisfies the standard ellipticity condition; the Neumann
datum g ∈ L2(0, T ; H−1/2(�N )) while the initial one u0 ∈ L2(�). Observe that the notations
adopted for the function spaces are standard (see e.g. [7]). The anisotropic nature of problem (1)
can be emphasized, e.g. by an anisotropic diffusivity tensor or a scalar one varying anisotropically
in � (see Section 4).

The weak formulation of (1) reads: find u ∈U = L2(0, T ; H1
�D

(�)) ∩ H1(0, T ; (H1
�D

(�))′) s.t.∫ T

0

∫
�

{
�u
�t

v + D∇u · ∇v

}
dx dt =

∫ T

0

∫
�
f v dx dt +

∫ T

0

∫
�N

gv ds dt ∀v ∈U (2)

with u(x, 0) = u0(x). It is known that U is continuously embedded in C0([0, T ]; L2(�)) [7].
1.1. Managing the space–time

Among the possible cGdG schemes, we adopt the cG(1)dG(0) method, i.e. continuous piecewise
affine in space and discontinuous piecewise constant in time finite elements. The choice of lin-
ear elements is essentially dictated by the anisotropic framework [8] we are interested in. The
employment of piecewise constants in time aims at containing the computational cost.

Concerning the time discretization we partition the t-axis via the time levels 0=t0<t1< · · · <tN−1
<tN=T , and set Jn = (tn−1, tn], kn = tn−tn−1 and Sn = � × Jn , with n = 1, . . . , N . The cG(1)dG(0)
approximate solution to (2) reduces, on each sub-interval Jn , to a function belonging to the space
Sk ={v : (0, T ] → H1

�D
(�) : v(·, t)|Jn ≡ ṽ(·) ∈ H1

�D
(�)}. These functions may be discontinu-

ous at each time level, being continuous to the left. This leads us to distinguish between the
two values v±

m = limt→0+ v(x, tm ± t), and to define the temporal jump [v]m = v+
m − v−

m , with
m = 1, . . . , N − 1. Note that the jump [v]m vanishes when v ∈U . Moreover, since 0 /∈ J1, the
value v(x, 0) has to be specified separately, ∀v ∈Sk . Finally, whileSk �⊂ U ,Sk |Sn ⊂ U |Sn , where
Sk |Sn ={v : Jn → H1

�D
(�) : v(·, t) ≡ ṽ(·) ∈ H1

�D
(�),∀t ∈ Jn} and U |Sn = L2(Jn; H1

�D
(�)) ∩

H1(Jn; (H1
�D

(�))′). Thus, we can rewrite the weak form (2) as: find u ∈U s.t.

BDG(u, v) =
N∑

n=1

∫
Jn

∫
�

{
�u
�t

v + D∇u · ∇v

}
dx dt +

N−1∑
m=1

∫
�
[u]mv+

m dx +
∫

�
u+
0 v+

0 dx
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=
N∑

n=1

∫
Jn

∫
�
f v dx dt+

N∑
n=1

∫
Jn

∫
�N

gv ds dt+
∫

�
u−
0 v+

0 dx=F(v) ∀v ∈U (3)

Trivially [u]m = 0, ∀m = 1, . . . , N−1, while u+
0 = u−

0 = u0(x). Throughout this paper we denote by
‖|w‖|DG = (BDG(w,w))1/2 the norm induced by the bilinear form BDG(·, ·) on the space W =U ∪
Sk . We refer to [9] for details.

To discretize the space we resort to a family of conformal triangulations of �. The temporal
discontinuity allows us to employ non-matching families {Thn }hn of meshes between successive
slabs. In particular we set Thn ={Kn}, with Kn triangle of diameter hKn and hn = maxKn hKn ,
SKn = Kn × Jn and LKn = �Kn × Jn .

Thus we define the cG(1)dG(0) space Shk = {vhk ∈Sk : vhk(·, t)|Jn ≡ �(·) ∈ X1
hn

∩ H1
�D

(�)},
X1
hn

being the space of the linear finite elements associated with the mesh Thn . The spatial conti-
nuity of the functions in Shk is guaranteed, while the discontinuity in time of Sk is maintained.

Inspired by (3), we state the cG(1)dG(0) formulation of (1), looking for uhk ∈Shk s.t.

BDG(uhk, vhk) = F(vhk) ∀vhk ∈Shk (4)

with u0h ∈ X1
h1

∩ H1
�D

(�) a proper finite element approximation of u0. We let the space–time
discretization error associated with (4) be ehk = u − uhk . Finally, we remark that (4) can be
actually referred to as a generic cG(r)dG(q) formulation by properly redefining the spaces Sk
and Shk .

2. THE ANISOTROPIC SOURCE

We introduce the essential concepts of the anisotropic setting in [8] used for enriching the a
posteriori analysis with an anisotropic counterpart. Let us focus on the generic slab Sn , Thn being
the associated mesh. The source of the anisotropic information resides in the invertible affine map
TKn : K̂ → Kn from the unitary equilateral reference triangle K̂ to the general element Kn ∈Thn ,
identified by the relation x= (x1, x2)T = TKn (̂x) = MKn x̂ + tKn , ∀x∈ Kn , with x̂∈ K̂ , and where
MKn ∈ R2× 2 and tKn ∈ R2. In more detail, we exploit the spectral properties of the (non-singular)
Jacobian MKn via two factorizations: the polar decomposition MKn = BKn ZKn of MKn into a
symmetric positive-definite matrix BKn ∈ R2× 2 and an orthogonal matrix ZKn ∈ R2× 2; the spectral
factorization BKn = RT

Kn
�Kn RKn of BKn in terms of its eigenvectors ri,Kn and eigenvalues �i,Kn ,

for i = 1, 2, with �Kn = diag(�1,Kn , �2,Kn ) and RT
Kn

=[r1,Kn , r2,Kn ]. The shape and the orientation
of each element Kn are completely described through the quantities ri,Kn and �i,Kn . Indeed, the
unit circle circumscribed to K̂ is mapped into an ellipse circumscribing Kn: the eigenvectors ri,Kn

and the eigenvalues �i,Kn provide us with the directions and the lengths of the semi-axes of such an
ellipse, respectively. In particular, we introduce the so-called stretching factor sKn = �1,Kn/�2,Kn

to quantify the deformation of the element Kn , with the agreement sKn�1, sK̂ being identically
equal to 1.

3. THE WAY

We provide the theoretical tool basis for the proposed space–time adaption procedure. It consists
of a real anisotropic a posteriori error estimator for the DG-norm ‖|ehk‖|DG, namely not driven by
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heuristic considerations but rather by a founded anisotropic theory. In particular, at this stage, we
are essentially interested in the reliability of this error estimator, i.e. in an upper bound for ehk via
the estimator itself.

Let us anticipate some useful notation. We define the local residuals by distinguishing between
the spatial and the temporal ones. For a fixed time interval Jn , let

�Kn
=

[
f −�uhk

�t
+∇ · (D∇uhk)

]∣∣∣∣
SKn

, jKn=

⎧⎪⎪⎨⎪⎪⎩
0 on (�Kn ∩ �D)×Jn

2(g−D∇uhk · n)|SKn on (�Kn ∩ �N )×Jn

−[D∇uhk · n] on (�Kn ∩ En
h)×Jn

be the interior and the boundary residual, respectively, associated with uhk and with the prism
SKn , ∀Kn ∈Thn , for n = 1, . . . , N , where En

h is the set of the internal edges of Thn while
[D∇uhk · n] = D∇uhk · nKn + D∇uhk · nK ′

n
denotes the jump of the diffusive flux across the

internal interfaces of Kn , for K ′
n ∩ Kn �= ∅.

Then we introduce the temporal residual Jn = [−uhk]n associated with uhk and with the time
level tn , together with the initial residual e−

0 = u0 − u0h . While �Kn
and jKn are related to the

space discretization, the quantities Jn and e−
0 are due to the discontinuity of the temporal scheme.

Moreover, the residual Jn has to be carefully computed by merging the information coming from
the two different meshes, Thn and Thn+1 (see [9] for details).

Thus, the a posteriori result can be stated as follows:

Proposition 1
Let u ∈U be the solution to (2) and let uhk ∈Shk be the corresponding cG(1)dG(0)-approximation,
solution to (4). Let �Kn be the patch of the elements sharing at least a vertex with Kn . Then, if
#(�Kn )�N� and diam(�K̂ )�C� � O(1), with C��hK̂ and �K̂ = T−1

Kn
(�Kn ) the reference patch,

there exists a constant C =C(N�,C�) such that

‖|ehk‖|2DG��2 =C
N∑

n=1

∑
Kn ∈Thn

⎛⎜⎜⎜⎝�SKn
RS
Kn

�S
Kn︸ ︷︷ ︸

�SKn

+ �T 1Kn
RT 1
Kn

�T 1
Kn

+ �T 2Kn
RT 2
Kn

�T 2
Kn︸ ︷︷ ︸

�TKn

⎞⎟⎟⎟⎠ (5)

where �SKn
= |K̂ |�3/21,Kn

�3/22,Kn
, �T 1Kn

= �T 2Kn
= k2n ,

RS
Kn

= 1

|Kn|1/2

⎧⎨⎩h1/2Kn
‖ j Kn

‖L2(LKn )

2�1/21,Kn
�1/22,Kn

+
[
‖�Kn

‖L2(SKn )+
1

k1/2n

(‖Jn−1‖L2(Kn)
+�1n‖e−

0 ‖L2(Kn)
)

]⎫⎬⎭
RT 1
Kn

=k−1/2
n [‖�Kn

−�Kn
‖L2(SKn )+k−1/2

n (‖Jn−1‖L2(Kn)
+�1n‖e−

0 ‖L2(Kn)
)]

RT 2
Kn

= (4 kn)
−1/2‖ jKn− j Kn

‖L2(LKn ), �T 1
Kn

=k−1/2
n

∥∥∥∥�e∗
hk

�t

∥∥∥∥
L2(SKn )
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�T 2
Kn

= k−1/2
n

∥∥∥∥�e∗
hk

�t

∥∥∥∥
L2(LKn )

�S
Kn

=[sKn (r
T
1,Kn

G̃n
Kn

(e∗
hk)r1,Kn ) + s−1

Kn
(rT2,Kn

G̃n
Kn

(e∗
hk)r2,Kn )]1/2

the standard notation ‖·‖L2(·) being adopted for the L2-norm, �Kn
= k−1

n

∫
Jn

�Kn
(x, t) dt , j Kn

= k−1
n∫

Jn
jKn (x, t) dt , �1n is the Kronecker symbol, while G̃n

Kn
(e∗

hk) = |Kn|−1Gn
Kn

(e∗
hk) is the scaled

counterpart of the symmetric positive semi-definite matrix (Gn
Kn

(ehk))i j =
∫
�Kn × Jn

(�ehk/�xi )
(�ehk/�x j ) dx dt , for i, j = 1, 2, where the spatial derivatives of the (unknown) discretization error
are computed via a Zienkiewicz–Zhu gradient recovery procedure combined with a proper linear
reconstruction of the time dependence.

Proof of result (5) is provided in [9]. Notice that the quantities RS
Kn

and RTi
Kn

are scaled (with
respect to the space and time, respectively), so that all the spatial and temporal dimensional
information is collected into the coefficients �SKn

and �T iKn
. The anisotropic information is lumped

into the weights �S
Kn
, while the �T i

Kn
’s drive the temporal adaption. In more detail, both these

weights will be involved in a suitable optimization procedure leading to the predicted mesh
spacing and time step [9].

4. THE CROSSCHECK

We pursue a slab-wise error equidistribution criterion. We aim at guaranteeing on each slab Sn the
same global tolerance �. For this purpose we split � into a space (�S) and a time (�T ) contribution.
The time step and the spatial mesh are successively adapted till both the time and space estimators
�Tn = ∑

Kn∈Thn
�TKn

and �Sn = ∑
Kn∈Thn

�SKn
are within the corresponding tolerances. We sketch

the overall procedure in Figure 1. Notice that, at the end, if the time tolerance is widely satisfied
(focus on the parameter 	 in the flowchart), a new (larger) time step is guessed for the next slab.

We consider the groundwater flow equation describing the flow of groundwater through an
aquifer [10]. The transient equation has the form (1) where u is the hydraulic head, D represents the
hydraulic conductivity scaled by the specific storativity S0, the scaled specific discharge q= −D∇u
is given by the Darcy law, while the velocity of the water is q/p, where p is the volume porosity. We
consider (1) on the domain� = (0, 100)2(m), modeling a vertical cross-section of a pervious aquifer
interlaced with the two impervious layers, �1 = (0, 80) × (56, 60) and �2 = (20, 100)× (40, 44).
Moreover we assume T = 105(s), f = u0 = 0, S0 = 0.02 (m−1), p= 0.01, while D takes on the
value 1.16× 10−3(ms−1) in the pervious zone and 1.16× 10−10 (ms−1) in the barriers �1 ∪ �2.
We modify (1) to support non-homogeneous Dirichlet conditions. In particular, we choose u = 1−
exp (−t/1000) (m) on the top horizontal side and u = 0 on the bottom one, while a homogeneous
Neumann condition holds elsewhere. The tolerances for the adaptive algorithm are �S = �T = 10.
This is a multiscale problem in both space and time. There exist three main phases: a very fast
transient where the velocity field sets up near the top boundary; an intermediate period when the
flow curves around �1 and is pushed inside the channel between the two impervious layers; and
the final phase when the velocity becomes steady inside the channel (where most of the kinetic
energy gathers up) while some water flows out of the bottom boundary. We show in Figure 2 two
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Figure 1. Flowchart of the space–time adaptive algorithm for each slab Sn .
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Figure 2. Adapted grids: t � 104 (left), t � T (center); time histories of kn and #(Thn ) (right).

adapted grids, on the left when the fluid starts entering the channel, and in the middle at the final
time. In both cases the meshes are extremely anisotropic, especially around �1 and �2. Figure 2
(right) displays the time histories of kn (solid line) and of the number of mesh elements (dashed
line), both scaled to their maximum value, 3800 (s) and 14 700, respectively. In particular, at the
very initial stage, the time step is really small (about 30–60 (s)), while the meshes are very coarse
(only 60–80 elements). Both curves reach their maximum when the water leaves the channel, and
eventually decrease smoothly.

For a more exhaustive numerical validation, we refer to [9]. We anticipate that the estimator is
always reliable and the effectivity index is independent of sKn on the adapted grids.
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